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Abstract—The objective of this paper is to present a finite element formulation for finite deformation
analysis of a slender straight elastic in-plane beam. The formulation is based on a modified Hu~
Washizu variational principle in which exact nonlinear kinematic equations are taken into account.
Only the rotation in the interior of an element needs to be approximated. Thus the ambiguities
concerning the order of polynomial approximations for different field variables, e.g. longitudinal
and lateral displacements, are avoided. The Euler-Lagrange equations of this principle are, among
others, exact kinematic and equilibrium conditions for the beam. The solution capabilities are
illustrated with numerical examples. Two different finite elements are examined: with 3rd-order
interpolation polynomials for the rotation, and with 5th-order polynomials. Excellent convergence
and accuracy of both elements is demonstrated. The results indicate that the accuracy of the present
elements is not notably influenced by the length of the element and the order of numerical integration
(if it is greater than a minimal value). Only one load step was sufficient in calculations to achieve
the results.

1. INTRODUCTION

Most of the finite element large deformation analyses of beams consider the beam as a one-
dimensional continuum and use the conventional displacement approach, applying a virtual
work principle or a principle of minimum potential energy. In such analyses, the dis-
placement components are approximated by polynomials, employing the displacements
and their first derivatives as the nodal degrees of freedom of the element (Epstein and
Murray, 1976). However, the derivatives of the displacements are not convenient nodal
parameters for frame analysis and must be replaced by nodal rotations in production
computer programs. Since this is not likely to be possible for exact nonlinear kinematic
relations, “small” terms in kinematic equations are often neglected, so that the derivative
of lateral displacement with respect to the longitudinal coordinate becomes a linear function
of the rotation. In case of very large deformations such simplification, however, requires
the introduction of a rotated local coordinate system, a relatively small length of the finite
element and other improvements. Moreover, the displacement approach is inferior to the
mixed approach, especially for nonlinear materials, as discussed by Banovec (1981), Noor
and Peters (1981) and Karamanlidis (1988).

The objective of this paper is to present a finite element formulation for finite planar
deformations and rotations of a slender straight elastic beam, based on a modified Hu~
Washizu variational principle (Washizu, 1981) in which exact nonlinear kinematic equations
are taken into account. Only the rotation in the interior of an element needs to be approxi-
mated. The ambiguities concerning the order of polynomial approximations for different
field variables, e.g. longitudinal and lateral displacements, are thus avoided. The Euler—
Lagrange equations of this principle are, among others, exact kinematic and equilibrium
conditions for the finite deformations of the beam. The solution capabilities are illustrated
with numerical examples.

2. KINEMATIC AND CONSTITUTIVE RELATIONS

Let the locus of the centroids of the cross-section of the undeformed beam element be
a straight line, and let it coincide with the z' axis of the Cartesian coordinate system
(z'.2%. 2% with e,. e,, e, as the unit base vectors. Let the cross-section A of the beam in the
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Fig. 1. The deformation of 2 beam element.

coordinate plane z' = const be symmetric with respect to the coordinate plane z? = 0 (Fig.
1). The Lagrangian description is used with the initial undeformed configuration taken as
reference. A material particle is identified by material coordinates x' = x, x> = yand x* = z,
which coincide with the Cartesian coordinates z', z%, z* in the reference configuration. The
material base vectors in the reference and in the current deformed configuration are denoted
by 21,82 8:and G, G, G,

The components u and w of the displacement vector u(x) along the centroid axis

u = ug, +wgs (D

are related to the deformation functions e(x) and ¢(x), where ¢ is extensional strain of the
centroid axis and ¢ its rotation, by the kinematic equations

I+ —(1+&)cosp =0 2)

w4+ (1+e¢)sing =0, 3

as shown e.g. in Reissner (1972) or Saje and Srpéi¢ (1985). In egns (2)~(3) prime (') denotes
the derivative with respect to the longitudinal coordinate x.

The constitutive law for material is assumed to be given by a linear elastic relation
between the longitudinal true stress component, o, and the associated extensional strain, D
D=c¢+z¢’

of the generic particle (x, z) of a beam:

6 = ED. 4

E is the elastic modulus of material. Integration of stresses over the cross-section gives the
axial force, N, and bending moment, M, of the cross-section



Variational principle for deformation of beams 889

N=jadA=EAe (5)
A

M= f zo d4 = Elgp’. 6)
A

Here A is the area and 7 the moment of inertia of the cross-section with respect to the y
axis.

3. GENERALIZED TOTAL POTENTIAL ENERGY FUNCTIONAL

Consider a straight elastic beam of initial length L, subjected to prescribed external
distributed loads and moment per unit of the undeformed length of the centroid axis, p,,
p. and m,, and to point loads at both boundaries at x = 0 and x = L. The following
generalized total potential energy functional, E,, for the planar deformation of the beam
is proposed :

L

L L

Elp’? dx— f peudx

0

AEg? dx+%j

0

Ep(u, W,e, ¢,R|,R2, Uk) = %J

0

L L L
—f p:wdx—J' my¢dx—Ef(Uk)+f R [1+u' —(1+¢)cos @] dx
0 0

0

L
+L Ry[w'+(1+¢)sin @] dx, (7)

where the kinematic constraints (2)-(3) have been taken into account by the Lagrangian
multipliers R (x) and R,(x). In eqn (7) U, (k=1,2,3,...,6) denotes generalized dis-
placements at the two ends of the beam, and E? is the potential of the boundary forces, S
(Fig. 1). E, is a function of six independent functions of x, i.e. u, w, ¢, @, R;, R,, and six
independent generalized nodal displacements, U,.

By equating the variation of the functional (7) with respect to its arguments to zero

_0E, 0OE, OE, JE, JE, JE, OE,
OE, -Eée+ P S+ E» ou+ Wéw+ aR|5R.+6—R2¢SR2+ a_maU* =0

and integrating by parts the terms with «’, w’ and ¢’, the Euler~Lagrange equations of the
functional are derived : the kinematic constraints (2) and (3), the differential equations

AEge—R cos 9+ R,sinp =0 ®)
Elp"—(14¢&)(R, sin o+ R, cos @) +m, =0 )
14+p: =0 10)

2+p-=0 an

and the boundary conditions at x =0 and x = L:
x=0: S1+R}=0 (12)
S;+R}=0 (13)

S;+Elpy =0 (14)
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S;—R5=0 (16)
Se+Elp, = 0. (17)

By integrating differential equations (10) and (11) we obtain

Ri(x) = Ri~ L p(&)d¢ = R,(R},x) (18)

Ry(x) = R} — J; P:(§) A = Ry(R}, x). (19)

We have assumed that the tractions p, and p. are integrable functions of x. Functions R,(x)
and R,(x) are thus expressed in terms of their values R} and R at x = 0. We insert eqns
(18)~(19) into the functional (7), eliminate ¢ from the functional by employing eqn (8)

1
&= £ (Ri cos 9= R, sin ¢) = &(RY, RS, 9, %) (20)

and integrate by parts terms with & and w” and thus obtain a new functional, E*:

L

Elp? dx— J m,p dx

0

L L

AFe? dx+1 J

0

EP*(@’: R?a Rgs Uk) = %J'

0

L L
+j Rt[l-(1+a)cos¢]dx+f Ry(1+¢)sin @ dx— (S, +RHU,
0

o
—(S$:+RPU, —=S3U; —(S¢—RDU—(Ss—R5U;s~ S Us.  (21)

This functional is a function of only one function, i.e. the rotation ¢(x), and of eight discrete
values, i.e. boundary displacements U, = uy, U, = wy, Uy =1, and Us = w,, boundary
rotations U; = ¢, and U = ¢,, and Lagrangian multipliers at x = 0, i.e. RS and R%. In
such a functional only the variation of rotations must be assumed, while no approximations
need be made regarding the variations of », w and ¢ in the interior of the element. This is
a considerable advantage in the finite element implementation of the variational principle.
Because the first derivative of the rotation is the highest derivative in the functional, only
the C° continuity must be given to the approximating function.

It has to be emphasised that no restrictions concerning the size of rotations, extensional
strain, or displacements have been set. A conceptually similar functional was proposed by
Banovec (1981) for large displacements and moderate rotations analysis of ¢lastic—plastic
beams, where, however, the kinematic constraints (2)-(3) were simplified.

4. FINITE ELEMENT FORMULATION

Consider a beam element of initial length L with a nodal system consisting of M
equidistant nodes (Fig. 2). For the approximation of the distribution of the rotation along
the beam, polynomial interpolation functions, [.(x), of degree M —1 are employed. The
variation of the rotation ¢(x) over the element is expressed by the interpolation equation
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Fig. 2. The beam finite element.

M
o(x) = Zl 1(X)Ps, (22)
k=

where ¢, (k = 1,2,..., M) are nodal rotations of the element, ¢, being equal to U, and
@y to Ug (see Fig. 2) Inserting expression (22) into the functional (21), varymg the
functional with respect to the boundary displacements and nodal rotations, R%and RY, and
equating the variation of the functional to zero, the following system of algebraic equations
for the element is obtained :

L

L‘(qﬂm,ij,UhU.z): —j (l+8)COS(pdx+U4-—U,+L=0 (23)
]
L

LI(q)m, Rjos UZ’ US) = “J‘ (} +8) Sin¢dx+ US_UZ =0 (24)
(1]

L
S*(Pm, R)) = J {EIo’I; +[(1 +&)(R, sin ¢+ R; cos @) —m,}I;} dx
0

k=1,23,....M; m=123,....M; j=12. (25)
x=0: Si+R}=0 (26)
S;+R3=0 27
x=L: S—R;=0 (28)
Ss—R; =0, (29)
where
= St (30a)
S¢ =S¢ (30b)
SFr=0 fork=273,4,5. 31)

Equations (23)~(29) constitute a system of M+ 6 nonlinear algebraic equations for M +6
unknowns @, @3, ..., @y, Uy, Uz, Us, Us, RY and RY. The unknowns ¢, ..., @x_,, RS and
RY are internal degrees of freedom of the element, while U,,U,, U; = ¢,, U,, U;s and
Uy = ¢y are its external degrees of freedom. The system is solved iteratively, employing
the Newton method. In an iteration step, Newton’s increments of the internal degrees of
freedom (A@,,...,A@y_, AR}, ARY) are first expressed in terms of increments of the
external degrees (AU AU AUy = A, AU, AU, AU = Agp,,) from a linearized system
of eqns (23}~(25):
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M 61-1 2 aLl CLI CLI
mZ; 8({) -4 Pt Z aRO LEAU L Ab“ = _._.L ((pm R C‘ (/4) (32)
3 5L~ 2 8L, @L-, . eL, ,
mzz:I G(Pm u 5R9 A{j CL AU = ~—L, (G’m R {* Us s) (33}
M (’?S* aS*
2 3 A, + Z aReARO —~S*@m Ry i=1,2,....; V. (34)
#re= | m

The coeflicients of the system of equations (32)-(34) are shown in the Appendix. Gaussian
integration is employed for the determination of the integrals in (32)-(34).

Eliminating increments of internal nodal rotations from eqns (34) gives Ag,
(m=2.3,...,M~1)as a linear combination of increments of AR}, AR? and generalized
nodal displacements AU,

2 6

A=Y F AR+ 3 G AU +f, (m=23,...,M~-1). (35)
i=1 k=1

Inserting eqn (35) in (32)~(33), the increments ARY and AR are obtained in terms of AU, :

&
AR = ¥ HuAUi+r, (j=1,2). (36)
k=1

Reorganization and linearization of eqns (26)-(30) gives

AS, = —AR} (3N
AS, = —AR} (38)
AS; = AS} (39
AS; = AR: (40)
AS; = ARS (41)
AS, = ASF. (42)
According to eqns (18) and (19),
AR} = AR}
and
AR = ARY.

Inserting eqns (35)—(36) and (25) into eqns (37)-(42) yields increments in boundary forces
AS,, expressed by increments of generalized boundary displacements, AU, :

&
= Y KuAUg+l, (m=1,2,...,6). (43)
£

Here K,, are the components of a tangent stiffness matrix and /, the components of a
tangent load vector of the beam element.
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Equation (43) presents the relation between the increments of generalized boundary
forces, AS,,, and their energy complements, increments of generalized boundary dis-
placements, AUy, for an element in a coordinate system (z',z%,z%) of the element. The
corresponding relation in another coordinate system is obtained by the coordinate trans-
formation.

The increments of boundary displacements are determined iteratively from nodal
equilibrium equations of a structure, Let the structure have “E™ elements and N nodes,
the latter being subjected to generalized external forces, FPn=12,...,N; k=12,3).
Equilibrium equations for an isolated node “n” in which E, elements are connected, are:

E,
FP—Y sP=0 (n=1,...,N; k=123). (44)

e=|

A linearization of (44), in Newton’s sense, gives
E, E,
YASP = —F"+ Y S (n=1,...,N; k=123). 45
e=| e=1

Introduction of (43) and (25)-(29) for each connecting element into (45) yields a system
of linear equations from which, upon imposing displacement boundary conditions, the
increments of generalized nodal displacements, AU, for the whole structure are obtained.
AR} and increments of the internal nodal rotations Ag,, for elements are then determined
a posteriori from eqns (36) and (35). New approximations for U™, ¢%’ and R} are then

NEWU? = UP + AU™ (i=1,2,3;n=1,...,N) (46)
NEWQY = 0+ A0 (m=2,3,...,.M—1;e=12,..,E) @7
NEWRY® = RY+AR™ (j=1,2;e=1,2,...,E). (48)

The iteration cycle is repeated until the required accuracy for unknowns is achieved. Zero
values are assumed as starting approximations for the quantities U™, ¢ and R

After the iteration has been completed and the unknowns determined, the internal
forces at the element boundaries (x = 0 and x = L) are determined using eqns (26)}-(29)
for axial and shear forces and eqn (25) for the bending moment. The distribution of internal
forces in the interior of a beam element is obtained by application of the equilibrium
equations rather than the constitutive equations. The equilibrium equations for axial and
shear forces, N and @, at the cross-section x = const, for example, give (Saje and Srpéic,
1985)

N(x)=R;cos¢—R,sin¢ (49)
Q(x) = R, sin ¢+ R, cos ¢. (50)

A similar equation is derived from the equilibrium equations for the bending moment M(x).

The distribution of the displacement components, u# and w, over the element and a
corresponding deformed shape of the beam are found by integration of eqns (2)-(3). We
have applied Gaussian integration of order equal to that employed for the determination
of the element tangent stiffness matrix and load vector. This assures that the accuracy in
deformed shape determination is equal to that achieved in Newton’s iterative solution of
eqns (23)-(24).

The lowest reasonable order of Gaussian integration can be estimated by inspecting
the integrands of eqns (A1)-(A13) of the Appendix and egns (23)-(25) for a simplified
situation, where we can assume sufficiently small rotations (J¢| ~ 0) and constant axial
and shear forces along the beam. Under such conditions the critical integrand appears to

SAS 24:8.F
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be the one in eqn (A13) containing a product of interpolation functions /./,,. which is a
polynomial of degree 2(M — 1). To make the integration of such a polynomial accurate the
Gaussian integration of order M is required. The influence of the integration order on the
accuracy of the solution will be discussed further on.

5. EXAMPLE PROBLEMS

We consider a cantilever subjected to various types of loadings and investigate the
influence of the degree of interpolation polynomials and the order of Gaussian integration
on the accuracy and the convergence of the numerical solution. Two different elements have
been examined : element F3 with 3rd-order interpolation polynomials for the rotation, and
element F5 with S5th-order polynomials. The lowest recommended orders of Gaussian
integration for the two elements are 4 and 6, respectively. In our calculations the orders of
Gaussian integration between 3 and 10 have been chosen.

The cantilever has been modeled by only one element. One loading step from the initial
undeformed configuration to the current deformed configuration is applied in all loading
cases. The iteration is stopped when the Euclidean norm of Newton’s increments in relative
end displacements (U/L, W/L) and rotations (¢) is smaller than 10~°. A double precision
arithmetic (approximately 16 digits accuracy) was used in the computer calculations.

The numerical solutions are compared to the analytical ones for incompressible elastica
(Saje and Srpc¢i¢, 1985; Mattiasson, 1981 ; Pfliiger, 1964). To assure incompressibility of
the centroid axis of the beam a large value for the axial stiffness of the beam has been
chosen.

Example 1 : A cantilever subjected at its free end to a moment M

Consider a cantilever of length L subjected to a moment M at its free end. The
descriptive data for the problem are given in Table 1. The exact solution (e.g. Saje and
Srpéi¢, 1985) shows that the deformed shape of the cantilever is part of a circle with
curvature x,

K=¢ =-—. (51)

Table 1 compares the computed values of the relative displacements (U/L, W/L) and the
rotation (¢) at the free end of the cantilever with the exact values. If a sufficiently high
order of Gaussian integration is used, accuracy up to six decimals is obtained for both
elements, F3 and FS, and for the reduced end moment, M, up to the very high value 4z
(the beam winds around the support twice). Whatever the magnitude of the end moment
only three iterations are needed to achieve this accuracy.

Example 2 : A cantilever subjected at its free end to a force F

The errors in the displacement components and rotation at the free end of the cantilever,
obtained with elements F3 and F3, are presented in Table 2. Comparisons are made with
the analytic solutions of Mattiasson (1981). With reduced forces, F, ranging from a small
value 0.2 (end deflection is about 7% of beam length) to a very high value 10 (end deflection
is about 81% of the length) and with the orders of Gaussian integration from 3 to 10, the
highest relative end displacement or rotation error with respect to the exact solution is 6%o
for the F3 element and 0.06%o for the F5 element. Three to five iterations were needed.

For reduced forces not bigger than F = 1, the solutions given by both elements are
identical to the analytic solutions of Mattiasson (1981). For this range of E, the absolute
magnitudes of the rotations are smaller than 0.5 (approximately 30°), which, according to
the classification of Stein (1982), defines the bound between large and finite rotations. We
may therefore conclude that both elements (F3 and F5) give exact values if rotations are
large.
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Table 1. A cantilever subjected at its free end to a moment M. One element, one load step

P— L — 4E = 10°
—z' 1E = 10
l MW L=1
L L M = ML/EI = 0.1M
M e ng n, &, (%a) &, {%o) £y (%)
n/4 F3 3 3 0.00 0.00 0.00
10 3 0.00 0.00 0.00
F5 5 3 0.00 0.00 0.00
10 3 0.00 0.00 0.00
EXACT —0.099684 0.372923 0.785398
n F3 3 3 0.00 0.69 0.00
10 3 4.00 0.00 0.00
F§ 5 3 0.00 0.00 0.00
10 3 0.00 0.00 0.00
EXACT — 1.600060 0.636620 3.141593
dn F3 3 3 —530.00 0.00 0.00
4 3 125.73 0.00 0.00
10 3 0.00 0.00 0.00
Fs 5 3 —16.67 0.00 0.00
6 3 1.42 0.00 0.00
10 3 0.00 0.00 0.00
EXACT — 1.0000GO 0.000000 12.566371
EXACT SOLUTION* U/L WiL ¢

e type of element, F3 or F5.
n; order of Gaussian integration.
n, number of Newton’s iterations.
g, relative error in quantity @ in comparison to exact solution, Qr, 8, = 1000(Q— Q2
Qr, in %o.
* Saje and Srpéic (1985).

Table 3 presents the values of the Euclidean norms of solution increments and of the
residual vectors throughout the iteration for F = 10. A good (roughly quadratic) con-
vergence rate may be observed. Also some other numerical experiments with various
loading conditions show a good convergence rate for elements F3 and FS.

The order of Gaussian integration may have some influence on the accuracy of the
solution, especially with element F3, but it does not influence the number of iterations. If
the order of Gaussian integration is equal to 10, the differences between the calculated end
displacements and rotations and their exact values for F= 10 are less than 1.25% for
element F3 (accuracy to three significant figures) and less than 0.02% for element F5
(accuracy to five significant figures).

Example 3 : A buckling problem

We consider the buckling of a geometrically perfect elastic beam subjected to a com-
pressive force P at its end. The critical values, Pz, of the compressive force P for the first
buckling mode of the beam have been calculated using the elements F3 and F5. The critical
load has been found in an iterative way by seeking, iteratively, a force which makes
the constrained element and structural tangent stiffness matrices singular. During the
deformation up to the critical load, the rotation of the centroid axis remains zero and the
axial force is constant throughout the beam, which substantially simplifies the integrals in
the element tangent stiffness matrix and load vector. Examining these integrals shows that
Gaussian integration gives exact results if the integration order in elements F3 and F5 is
equal to 4 and 6, respectively.

Table 4 shows the error in the buckling loads for three differently supported beams:
(1) a cantilever beam; (2) a clamped—simply supported beam ; and (3) a beam clamped at
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Table 2. A cantilever subjected at its free end to a force F. One element, one load step

freme L e AE = 107
- IE=11
D\ =1
- 3 Fo FLYEN = 0.1F
F e N #; &, (%o} 2, (%o} E; %)
0.2 F3 3 3 0.00 0.00 0.00
19 3 0.60 0.00 0.00
Fs 5 3 0.00 0.00 0.60
10 3 0.00 0.00 0.00
EXACT -0.00265 0.06636 0.09984
5.0 F3 3 § - 2.55 -2.33 .14
4 3 0.21 —8.32 813
10 b 0.18 —-8.24 .18
F§ 5 5 9.00 0.00 0.00
10 5 0.00 0.80 0.00
EXACT ~0.38763 0.71379 121537
10.0 F3 3 5 —6.03 ~4.33 1.91
4 3 —0.07 — 10 1.06
10 S 0.17 —1.25 1.21
F5 5 3 9.02 —0.04 —0.01
& 5 - 0,02 0.00 - .01
10 5 ~{.02 —0.01 — .01
EXACT ~0.55500 0.81061 143020
EXACT SOLUTION* Uik WiL &

e type of element, F3 or F5.
ne order of Gaussian integration,
n; number of Newton’s iterations.
o relative error in quantity @ in comparison to exact solution, @, 8o = 1000(Q - O
Q £ in %o.
* Mattiasson (1981).

Table 3. Euclidean norms of iteration steps for a beam
subjected at its free end to a force F= 10

Euclidean norm™ of

Iteration
number Solution Residual
i increment vector
1 60x 10} 1.1x10°
2 2.5x 10! 1.9x 10°
3 1LIx10"! 6.8x 102
4 1.3x 1074 7.8x 107!
5 1.Ix107 6.4x 107
Element F5.
Order of Gaussian integration: ng = 10.
*{v] = SQRT (w).

both ends. The relative error in the buckling load of element F3 ranges from 0.14%. in 2
cantilever to 63.87%o in a doubly clamped beam. Element F5 is much more accurate,
exhibiting a relative error of only0.59% in the most severe case (3).

Example 4: A cantilever subjected at its free end to a force F. Assessment of the accuracy of
“higher order theories”

The kinematic relations (2)-(3) include trigonometric functions which account for
finite rotations. If we substitute accurate values of trigonometric functions sin 3 and cos §
with their approximations given by a truncated Taylor’s series, 1st-order, 2nd-order, ...
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Table 4. A buckling problem: a beam subjected at its end to a force P. One element. one load
step

0] 2 3

12t
T iy =t e
= P
L=1 ——— ek e — bo———
€ ng &p (%0) &p (%) gp (%)
F3 3 0.27 89.60 —
4 0.14 36.05 63.87
10 0.14 36.05 63.87
F5S 5 0.00 0.43 7.10
6 0.00 0.18 0.59
10 0.00 0.18 0.59
Py EXACT* 24.674011 201.9073 394.784176

e element type, F3 or F5.
ne order of Gaussian integration.

gp relative error in P, in comparison to exact solution, P;; gp = 1000(P3~ Pg)/Pg, in %e.
* Pfliiger (1964).

theories are obtained. Thus an assessment of inaccuracy of the so-called *“higher order
theories” can be made. By 1st-order theory we define a theory which uses the approximation

sindx~ 9 cosd=xl. (52)

This corresponds to the classical small displacement beam element. Second-order theory
uses the relations

sin3x 9 cos3x1-192 (53)
Similarly, 3rd-order theory is introduced by the approximations
sindx 9—19° cos 9~ 1-482+49%. (54)

In Table 5 we compare the accuracy and convergence of a particular theory for the
reduced loads F =1, 5 and 10 for element F5. First-order theory is clearly not adequate
for describing large deformations, Second-order theory generally needs more iterations and
displays the highest error up to 23% (compared to exact value) in the end deflection, W.
The corresponding error of 3rd-order theory is only 2.6% ; less than 0.001% error is found
if accurate values of trigonometric functions are employed.

6. CONCLUSIONS

(1) We present a variational principle for finite planar deformations and rotations of
a slender straight elastic beam, based on the principle of a stationary value of generalized
potential energy of Hu-Washizu-type where the nonlinear kinematic equations are
accounted for by Lagrangian multipliers. The Euler-Lagrange equations of the principle are
exact kinematic and equilibrium equations and two equations for Lagrangian multipliers. By
integrating the equations for Lagrangian multipliers and expressing the extensional strain
of the centroid axis in terms of the axis rotation and Lagrangian multipliers, the functional of
the variational principle is obtained which is a function of only one function of longitudinal
coordinate, namely, the rotation of the centroid axis, and of eight discrete values, the
boundary displacements/rotations and values of Lagrangian multipliers at x = 0. Since the
first derivative of the rotation is the highest derivative in the functional, the C° continuity
needs to be given only to the rotation function.

(2) Based on this variational principle and in conjunction with the iterative method of
Newton, a family of new finite elements is proposed. Polynomial approximations of various
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Table 5. A cantilever subjected at its free end to a force F. Assessment of “higher order
theories”, One element F5, one load step

—— ’ AE = 107
’ it IE = 10
! ? Flw /; = |
s - F=FLYE[=0.1F
F hy ny " &, (%) £, (%o) &4 (%0)
1.0 10 I i - 1000.00 104.77 83.78
2 5 11.70 23.83 —1.08
3 4 0.00 —0.20 0.02
A 4 0.00 0.00 0.00
EXACT —0.05643 0.30172 0.46135
5.0 10 I 1 ~— 1000.60 1334.96 1056.99
2 6 29.54 160.22 —38.10
3 5 —1.37 ~11.63 2.02
A 5 0.00 0.00 0.00
EXACT —-0.38763 0.71379 1.21537
10.0 10 i 1 - 1600.00 3112.13 2495.79
2 6 21.24 233.37 —67.53
3 5 —1.48 —26.46 5.85
A 5 —0.02 - 0.01 —0.01
EXACT m —0.55500 0.81061 143029
EXACT SOLUTION* UL WiL ¢

ng order of Gaussian integration.
ny order of theory; “A” means accurate trigonometric functions.
n; number of Newton's iterations.
g relative error in quantity @ in comparison to exact solution, Oy, g, = 1000(@ —Q,)/
Ok, in %e.
* Mattiasson (1981).

orders for the rotation have been chosen. No approximation is necessary regarding the
variation of displacements in the interior of an element. The example problems show that
the accuracy of solution employing only one element to describe the deformations of a
cantilever subjected to a lateral point load and only one load step for even extremely high
loads, for the element with a polynomial of Sth-order for the rotation (named “‘element
F5”), is really very high. The relative error in displacements and rotations compared with
the exact solutions was less than 0.02%. in all calculated examples. Element F5 behaves
excellently in buckling, too; the error in buckling load for one element was found to be less
than 1% for any combination of boundary conditions. The family of finite elements
presented is insensitive to the number of load steps and the convergence proves to be
quadratic. Gaussian integration of various orders has been used, but M-point integration
for an element with (M — 1)th order of polynomial for the rotation proves to be sufficient.

(3) The results indicate that the accuracy of the elements is not significantly influenced
by the length of the elements, number of load steps and order of Gaussian integration (if it
is greater than the minimal value, M). Due to the physical nature of Lagrangian multipliers,
the influence of conservative distributed loads can be precisely accounted for. Therefore, a
beam subjected to a variety of loads and extremely deformed, may be modeled with only
one element, but still with a very high precision.

(4) For the sake of clarity, the present paper limits itself to the consideration of
planar straight elastic beams with constant cross-section excluding shear deformations. A
generalization to beams having varying cross-sections is a simple matter. The extension of
the present variational principle to curved beams and inclusion of shear deformations are
also straightforward. The author has achieved this employing the kinematic relations given
by Reissner (1972) and the derivation will be presented elsewhere. Adaptation of the present
variational principle to materials exhibiting nonlinear and creep effects is also feasible.
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APPENDIX: COEFFICIENTS OF THE SYSTEM OF EQUATIONS (32)-(34)

oL, 1t

R TAE ucos’tpdx (Al
oL, 1 [t
3R = 4E A sin ¢ cos ¢ dx (A2)
aL, [* . 1
Eral A (l+e)smtp+EQcos<p 1, dx (A3)
oL,
FI -1 (Ad)
oL,
30, = ! (AS)
oL, oL,
3R~ ORY (A6)
oL, P,
3R” T AE 0sm ¢ dx (A7)
oL, L 1 .
(—3-‘;:= , (l+e)cos<p—EQsm<p I, dx (A8)
oL,
au, - ! (A9)
oL,
a_u," (A10)
as* oL,
R} o9, (A1)
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N and Q, the axial and shear forces in a cross-section, are given in eqns (49)-(50).



